Inicio arrow Ciencia arrow Fisica arrow El Nacimiento de la Cuántica como Teoría
El Nacimiento de la Cuántica como Teoría Imprimir E-Mail
Ciencia - Física

El Nacimiento de la Cuántica como Teoría

 

Por Eduardo Yvorra

http://www.geocities.com/fisica_que/

Entre 1925 y 1926 se publicaron tres trabajos independientes que resultaron ser desarrollos equivalentes de una teoría cuántica completa:

  • Mecánica matricial de Werner Heisenberg.

  • Mecánica ondulatoria de Erwin Schrodinger.

  • Álgebra cuántica de Paul Dirac.

Heisenberg un físico de 20 años, expreso que su carrera comenzó en un encuentro con Bohr donde este le dijo que los átomos no eran cosas. Entonces Heisenberg se preguntaba ¿de qué sirve hablar de trayectorias invisibles para electrones que se desplazan dentro de átomos también invisibles?

 

Así intento diseñar una suerte de código que relacionara los números cuánticos de Bohr y los estados de energía de un átomo, con las frecuencias y los brillos de los espectros de luz que se determinaban experimentalmente. Al igual que Planck, Heisenberg considero al átomo como un oscilador (un resorte) virtual capaz de producir a través de las oscilaciones, todas las frecuencias del espectro. Desecho así la imagen del átomo como un pequeño sistema solar. A partir de un desarrollo de álgebra matricial bastante complejo, Heisenberg desarrollo una teoría cuántica completa, incorporando también su famoso principio de incertidumbre. Como ya mencionamos, este principio establece que para pares de valores denominados conjugados, tales como el momento (m.v) y la posición, las entidades cuánticas (electrón, fotón, átomos) no pueden tener valores determinados precisos de dichas variables conjugadas simultáneamente. Es decir cuando puedo detectar con precisión la ubicación de un electrón, en ese instante este (electrón) no tiene una velocidad determinada. Esto no es un resultado de deficiencias o errores en las mediciones, sino una característica intrínseca, una imposibilidad propia de las denominadas entidades quánticas. De su desarrollo matricial, Heisenberg determino un valor numérico para su principio de incertidumbre, diciendo que la incertidumbre de una variable conjugada, por Ej. la posición, multiplicada por la incertidumbre en la otra variable conjugada, el momento, será siempre mayor que una constante: Dx.Dp>h/2p. Físicamente esto lo podemos entender como que a medida que reduzco la incertidumbre en la determinación de la posición (se reduce Dx), el momento de la entidad quántica será mas incierto(aumenta Dp), de manera tal que la desigualdad que expresa el principio de incertidumbre se mantenga.

 

Paralelamente a los desarrollos de Heisenberg, otro físico, Erwin Schrodinger, prefería basar sus investigaciones a partir de las conclusiones de de Broglie, sobre todo por que la teoría de Heisenberg le resultaba extremadamente compleja, carente de figuras y con muchas complicaciones matemáticas. Así y todo su concepción –tampoco sencilla- fue una ecuación diferencial (cuya solución es una función y no un valor numérico), denominada ecuación de Schrodinger. La solución de esta ecuación resulta ser una onda que describe “mágicamente” los aspectos cuánticos del sistema. La interpretación física de esta onda fue uno de los grandes problemas filosóficos de la mecánica cuántica.

 

 

d2y/dx2 +8p2m/h2.(E-V).y= 0

 

Donde y es la solución de la ecuación de Schrodinger. Fue Max Born quien finalmente le dio a la función de onda el concepto de probabilidad estableciendo que la intensidad de la función de onda, es decir el cuadrado de la amplitud, mide la probabilidad de encontrar a la entidad quántica descripta por la onda en una posición determinada del espacio, la onda y determina la factibilidad de que el electrón este en una posición determinada. A diferencia el campo electromagnético, y no se corresponde con una realidad física. Este concepto es realmente complejo, dado que establece que una entidad cuántica tal como un electrón existe en una superposición de estados cuánticos, cada uno de ellos con una probabilidad de ocurrencia determinada a través de la función de onda correspondiente. Esta idea de la superposición es la que Schrodinger no aceptara por parecerla absurda y que tratara de rebatirla con su famoso experimento de pensamiento conocido como el gato de Schrodinger.

 

En 1925 Heisenberg dio una conferencia en Cambridge donde menciono sus trabajos acerca de la teoría cuántica. Una copia de sus borradores acerca de la mecánica matricial llego a manos del joven Paul Dirac. Este a partir de los mismos, desarrollo su propia versión de la teoría cuántica que resulto ser mas amplia que las versiones de Heisenberg y Schrodinger, en realidad estas resultaban casos particulares incorporados en el desarrollo de Dirac, conocido como Teoría del Operador o Álgebra Cuántica. Los tres desarrollos considerados como una teoría cuántica completa producían los mismos resultados, por caminos diferentes. Mas adelante, Dirac logra incorporar a los conceptos de la teoría cuántica los requerimientos de la teoría especial de la relatividad para así llegar a dar una descripción completa del electrón. En estos trabajos, la solución matemática de sus ecuaciones llevaba a la conclusión de la necesidad de la existencia de una nueva partícula, de iguales características que el electrón, pero con carga positiva. Fue así como Dirac predijo así la existencia de la antimateria a pesar de que no tenia claro su significado físico. Finalmente en 1932 Carl Anderson descubre el positrón o anti-electrón confirmando los resultados teóricos de Dirac.

 

Paul Dirac también trabajo en las reglas estadísticas que describen los comportamientos de grandes números de partículas cuyos valores de spin son valores medios de números enteros (el electrón tiene s=1/2). Investigaciones similares fueron llevadas a cabo en forma independiente por el físico Enrico Fermi, de allí que estas reglas estadísticas que explican el comportamiento de cierto tipo de partículas se denomina estadísticas de Fermi-Dirac, y a las partículas se las denomina genéricamente Fermiones, concepto este que se desarrollara mas adelante.

 

Estos desarrollos teóricos de Heisenberg, Schrodinger y Dirac, si bien proporcionaron una perfecta descripción matemática de los fenómenos atómicos, no iluminaban el cuadro físico. ¿Cuál era el significado de las ondas y las matrices? ¿Cómo están estas relacionadas con nuestras nociones de sentido común acerca de la materia y el mundo en el cual vivimos? Heisenberg nos proporciona ciertas respuestas. En un trabajo publicado en 1927, comienza su argumentación haciendo referencia a la teoría de la relatividad de Einstein, la cual cuando fue publicada, era considerada como contradictoria para el sentido común por muchos físicos. Luego, en un dialogo imaginario con Kant, Heisenberg continua diciendo: ¿qué es el sentido común?, sentido común para Kant es la manera en que las cosas tienen que ser. Pero entonces ¿qué significa esta manera de ser de las cosas?, sencillamente, como siempre fueron.

 

Einstein fue probablemente el primero en darse cuenta de la importancia de saber que las nociones básicas y las leyes de la naturaleza, a pesar de estar bien establecidas, eran validas solo dentro de los limites de la observación, y que no necesariamente seguirían siendo validas fuera de estos limites. Para las personas de la antigüedad, la tierra era plana, pero no para Magallanes o para los astronautas. Las nociones físicas básicas de espacio, tiempo y movimiento, estaban bien establecidas y sujetas al sentido común hasta que la ciencia avanzo mas allá de los confines en los que trabajaron los científicos del pasado. Entonces surgió una contradicción drástica que forzó a Einstein a abandonar las ideas del “viejo sentido común” respecto al tiempo, la medida de las distancias y la mecánica; y dirigirse hacia la creación de la teoría de la relatividad fuera del “sentido común”. Resulto entonces que para muy altas velocidades, distancias muy grandes y largos periodos de tiempo, las cosas no eran lo que “deberían ser” porque “siempre habían sido así”.

Heisenberg dice que la misma situación es la que existe en el campo de la teoría cuántica, el procedió a averiguar que era lo que fallaba con la mecánica clásica de las partículas materiales cuando la introducimos en el campo de los fenómenos atómicos. Así como Einstein comenzó el análisis critico del fracaso de la física clásica en el campo relativista, Heisenberg hizo lo propio con la mecánica clásica atacando la noción básica de la trayectoria de un cuerpo en movimiento. Durante tiempos inmemoriales, la trayectoria había sido definida como el camino a lo largo del cual un cuerpo se mueve a través del espacio. En el caso limite, el cuerpo era un punto matemático sin dimensión de acuerdo a la definición Euclidiana, mientras que el camino o trayectoria era una línea matemática , también sin dimensión. Nadie dudaba que esta era la mejor descripción de movimiento y que mediante la reducción de los errores experimentales de medición de las coordenadas y la velocidad de la partícula que se mueve, podríamos llegar a una descripción exacta del movimiento. Heisenberg dijo que esto solo es cierto en un mundo donde gobiernan las leyes de la física clásica, pero no en un mundo cuántico. Es por esta razón que en el mundo cuántico es necesario desarrollar otro método para describir el movimiento de las partículas diferente a la trayectoria que utilizamos en la física clásica. Aquí es donde la función de onda y viene en nuestra ayuda. Esta función de onda no representa una realidad física y no es mas material que las trayectorias lineales de la mecánica clásica. La función de onda puede ser descripta como una línea matemática ampliada. Ella guía el movimiento de las partículas en mecánica cuántica, en el mismo sentido que las trayectorias lineales guían el movimiento de las partículas en la mecánica clásica. Así como no consideramos que las orbitas de los planetas son como rieles que obligan a los mismos a seguir trayectorias elípticas, no debemos considerar a las funciones de ondas como un campo de fuerza que influencia el movimiento de los electrones. La función de onda de de Broglie-Schrodinger o mejor dicho el cuadrado de su valor absoluto ½y½2, solo determina la probabilidad de que la partícula sea encontrada en uno u otro lugar del espacio y que se moverá con una u otra velocidad.
Comentarios
Añadir nuevo Buscar RSS
+/-
Escribir comentario
Nombre:
Email:
 
Website:
Título:
Código UBB:
[b] [i] [u] [url] [quote] [code] [img] 
 
 
:angry::0:confused::cheer:B):evil::silly::dry::lol::kiss::D:pinch:
:(:shock::X:side::):P:unsure::woohoo::huh::whistle:;):s
:!::?::idea::arrow:
 

3.21 Copyright (C) 2007 Alain Georgette / Copyright (C) 2006 Frantisek Hliva. All rights reserved."

 
< Anterior   Siguiente >
 
Artistas
Duos-Trios
Grupos-Bandas
Cantantes
Organistas-Cantantes
Vins Martí
Letras

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Pioneros del Rock
Bill Halley
Buddy Holly
Carl Perkins
Chuck Berry
Eddie Cochran
Elvis Presley
Gene Vincent
The Everly Brothers
Roy Orbison
Fats Domino
Jerry Lee Lewis
Little Richard
ROCKERS
Sonny Burgess
Bo Diddley
Ricky Nelson
Sleepy LaBeef
Johnny Burnette
Conway Twitty
No hay usuarios conectados
 
 
Go to the Front Page Contact us Return to Blizzard.com
Blizzard Entertainment Battle.net Go to the Front Page Contact us Return to Blizzard.com
Libro de Visitas, Guestbook

Contactar por E-mail